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Introduction

Design of modern electromagnetic and electronic circuits is a complex task

̶ Tradeoffs between conflicting design requirements

̶ Physical effects such as reflection, crosstalk and propagation delays

Computer Aided Design (CAD) is essential 

̶ Systems with high bandwidth and complexity 
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Expensive!
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Distributed filters Matching networks Couplers

Introduction

Example: RF linear and passive distributed devices

Defined by several geometrical or electrical parameters

For each combination of design parameters 

Time-expensive electromagnetic simulations
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Introduction

Example: RF linear and passive distributed elements

‒ The design process requires to perform many simulations

‒ Design space exploration, optimization, uncertainty quantification 
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Introduction

Example: RF linear and passive distributed elements

‒ The design process requires to perform many simulations

‒ Design space exploration, optimization, uncertainty quantification 

Infeasible!
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Introduction
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Idea

̶ Identifying designs satisfying suitable criteria (application-dependent) 

̶ With a limited number of expensive simulations

The desired design solutions form the target region

This can:

1. Reduce the complexity of the design problem

2. Give insight on the system under study



Introduction

This work:

̶ Introduces a new methodology for target region identification

̶ Demonstrates its usefulness by design of a low pass filter

̶ Provides a PCA based bounding box to describe the target region
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Outline

● Goal

● Methodology

● Results and discussion

● Conclusion
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Goal

Find
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𝐴 ≔ 𝑥 𝜖 𝜒 𝑎 < 𝑓 𝑥 < 𝑏}
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Design parameters

𝐴 ≔ 𝑥 𝜖 𝜒 𝑎 < 𝑓 𝑥 < 𝑏}

Target region

Design space Expensive simulator
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Methodology

Gaussian Process [1]

A surrogate model is a computationally cheap

probabilistic model to describe the real problem

[1] Rasmussen, Carl Edward. "Gaussian processes in machine learning." Summer School on Machine Learning. Springer, Berlin, Heidelberg, 2003.
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Bayesian Active Learning by Disagreement (BALD) [2]

[2] Houlsby, Neil, et al. "Collaborative Gaussian processes for preference learning." Advances in neural information processing systems. 2012

[3] Shahriari, Bobak, et al. "Taking the human out of the loop: A review of Bayesian optimization." Proceedings of the IEEE 104.1 (2015): 148-175.

Methodology
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Application: Low Pass Filter Design
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Design Goal:

Application: Low Pass Filter Design
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Sequential Active Learning by

Entropy Feasible Search (with only 80 samples)

Real target region found by simulation 

(50000 samples generated by Latin Hypercube sampling)

Results and Discussion
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𝐹1 = 2 ∙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

[4] https://en.wikipedia.org/wiki/F1_score

Progress Plot of Sequential Sampling

(The experiments is repeated 5 times with error 

bar shown in the figure)

Precision and Recall [4]

Results and Discussion

https://en.wikipedia.org/wiki/F1_score


We use the real simulator to evaluate 323

design configurations predicted feasible by 

the model.

Only 6 of which are infeasible in reality,

Which means, based on the 323 data 

points, the precision of the model is 

98.14%
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Results and Discussion



̶ Feasible region representation
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85% reduction on design space!

Results and Discussion

Principal Component Analysis (PCA)-based approach Simple Bounding Box

32% reduction on design space



Conclusion

Our approach:
̶ Provides a way to generate/identify target regions  

̶ Data efficient

Future work:
̶ Challenging to not violate constraints

̶ More compact way to describe target region
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